ALLOWANCE FOR IONIZATION IN THE ANALYSIS OF
A MULTICOMPONENT TURBULENT BOUNDARY LAYER
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Diffusion in a multicomponent turbulent boundary layer is investigated with allowance for ion-
ization.

It is a well-known fact that flow in a multicomponent boundary layer at high temperatures is com-
plicated by the presence of an electric field, which is elicited by the occurrence of electrically charged
components: electrons and ions. Laminar boundary layers have been investigated with regard for ioniza-
tion in several papers [1, 2].

We propose to analyze a partially ionized turbulent boundary layer, Earlier in [3] we set forth a
method for the analysis of a chemically reactive multicomponent turbulent boundary layer of electrically
neutral components., The advent of ionization introduces definite modifications into the equations, but the
general scheme of the calculations for an ionized boundary layer on the assumption of quasi neutrality of the
mixture and the absence of an electric current (similar assumptions were made in [1, 2]) is basically the
same as for a boundary layer of neutral components, In the present note, therefore, we shall be mainly
concerned with the differences engendered by the intorduction of ionization, omitting the reasoning and com-
putations analogous to those set forth in [3] for a mixture of electrically neutral components.

We consider a turbulent boundary layer consisting of electrons (subscript 1), ions (subscript k, k=2,
...» P}, and neutral components, the number of which is N—p, where N is the total number of components.
We investigate the "frozen" boundary layer, for which chemical reactions and recombination take place
only on the surface of the flow obstacle, Inasmuch as the surface temperature of the obstacle in many cases
is much lower than the temperature of the gas in the flow core, we are justified in assuming that the densi-
ties of ions and electrons at the obstacle wall are equal to zero. We also postulate quasi neutrality of the
mixture [4] and the absence of electric current (the latter assumption is valid for gas flow past surfaces
that are insulators), The conditions of quasi neutrality and absence of electric current are stated analytic-

ally as follows:
—+ e, =0, Z — g, =10. )

We consider a double-layer flow scheme, i.e,, a turbulent core plus laminar subsfrate. The flow
in the laminary substrate is described by the one-dimensional continuity, motion, diffusion, energy, and
state eguations in the same form as in [3].

p

The relation obtained from the Stefan —Maxwell equations between the diffusion fluxes and concentra-
tion gradients gains additional terms in the presence of charged components to account for the influences of
the electric field on the diffusion process:
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(for electrons e; = e, for ions e; = ne, and for the neutral components ej = 0; we assume that the ionization

multiplicity n is the same for all ions),
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Using conditions (1) and relation (2) for ions and assuming that the diffusion properties of the ions are
identical and that the densities of ions and electrons are zero at the wall, we can show that the ion and elec-
tron density fields in the laminar substrate are similar, where the similarity is expressed by the relations
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Here I; = Jj/(pv),, + ci = const, and (pV)y, is the mass flux at the wall,
The relations I; = const are the integrals of the diffusion equations for the laminar substrate [3],

From relations (2), written for ions (i = 2,..., p) we eliminate the electric field, making use of rela-
tion (2) for electrons (i = 1); if we use Egs, (3) in this operation, we reduce the Stefan ~Maxwell relations
for charged particles to the form
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k=2, ..., p).

We introduce new variables by the formulas [5]

y
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Then the set of equations (4) reduces to a set of linear first-order equations with constant coefficients:
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For the neutral components the Stefan —Maxwell relations retain the same form in the new variables
as in [3]:
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We readily note on the basis of a comparison of Egs, (5) and (6) that they differ in the appearance of
the factor in front of the parentheses on the right-hand side of the equation., It may be inferred, therefore,
that the diffusivity of the charged particles (ions) differs from that of the corresponding (i.e., having the
same molecular weight) neutrals, Since the diffusivity of electrons is much greater than the diffusivities
of ions, Sk > Si]’ hence, we infer on the basis of Egs. (5) and (6) that the diffusivities of the charged
components (ions) are (n + 1) times the diffusivities of the corresponding neutral components. A set of equa-
tions analogous to (5) and (6) has been solved in [3]. In the set of equations (5) we need merely solve one
equation, because the density profiles of all other ions and electrons can be determined from relations (3).

The presence of ionization does not affect the solution of the motion and energy equations, and this
solution is obtained by a procedure similar to that used in [3].

We now consider the turbulent part of the boundary layer. Because molar mixing prevails in the
turbulent zone, it is reasonable to suppose that the diffusion characteristics of all the components are
identical in that zone,

We write the analog of the Fick law for the ionized gas. From the Stefan—Maxwell relations we ob-
tain for Dj; =D

] €
Ji=pD, (—‘_ +"— i i) .
Then the diffusion equation is represented as follows in the turbulent zone:
dc, dc, 0 Jde; 0 E
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If now we multiply every equation in the system (7) by 1 /m; and sum them on i from 1 to p, taking Eq, (1)
into account, we obtain the equation
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Assuming that the Prandtl number and all the Schmidt numbers formed from the turbulent transport
coefficients are equal to unity in the turbulent part of the boundary layer, we deduce the following similarity
between the fields of the velocity, enthalpy, densities of neutral components, and the quantity X {taking Eq.

(8) into account]:
u—u*  H—H*  ¢—c¢ X X*

Ue —u* H, —H* n Cro —C; X —X*
i=p+1, ..., N). (9)

Here u is the velocity, H is the enthalpy, and the asterisk * and subscript « refer to the values of the vari-
ables to the boundary of the laminary substrate and outer edge of the boundary layer, respectively,

It also follows from Egs. (7) that the ion and electron density profiles in the turbulent part of the
boundary layer are similar, this similarity being expressed by the formulas

? . (10)

In order to effect closure of the problem we need to affix to the set of final relations (9) and (10) the
equation of motion (as in [3], the equation of motion is conveniently written in integral form),

Equating the density values at the boundary of the laminar substrate on the turbulent side (10) and on
the laminar side (3), we obtain the relations

fe = %= (11)
I, I

Inasmuch as the densities cj,, at the outer edge of the boundary layer are presumed to be known, we
can use Egs, (11) to express the values of I, . .. ,Ip in terms of I,.

Invoking the conditions at the boundary of the laminar substrate [3], including the equality of the
velocities, enthalpies, and all particle densities on either side of the boundary of the laminar substrate,
along with the conservation of momentum, mass of each component, and energy, we derive expressions for
the values at the boundary of the laminar substrate, For example, the expression for the density of elec-
trons at the boundary of the laminar substrate acquires the form

o Gee” + 1L (B4 1—¢") , (12)
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Here 7y, is the wall friction.

Equation (12) coincides with the expression for the dengities of neutrals at the boundary of the laminar
substrate [3],

The densities of ions at the boundary of the laminar substrate can be determined from (3) and (12).
The quantity I, is determined in the same way as I; (i > p) for neutral components [3].

The remainder of the calculations for an ionized turbulent boundary layer are analogous to the calcu-
lations for a multicomponent boundary layer of neutral components,

Thus, the most significant difference between the flows in a turbulent boundary layer of a partially
ionized gas mixture and in a mixture of neutral gases is the increase induced by the electric field in the
resultant binary diffusivities of the ions by comparison with the diffusivities of the neutral components in
the laminar substrate,

123



NOTATION

X, ¥ ‘are the coordinates;

u, v are the velocity components;

c; is the mass density of the i-th component;
J; is the diffusion flux of the i-th component;
H is the total heat content;

T is the temperature;

o is the density;

m is the molecular weight of the mixture;

my is the molecular weight of the i-th component;
U is the molecular viscosity;

Djj are the binary diffusivities;

D, is the turbulent diffusivity;

E is the electric field strength;

k is the Boltzmann constant;

&4 is the electric charge of the i-th component;
n is the ionization multiplicity.

Subscripts

1 is the elements;

2,...,P is the ions;

p+1,...,N is the neutral components;

0, W, * are the variables evaluated at the outer edge of the boundary layer, at the wall, and at the

boundary of the laminar substrate, respectively .
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